
CS 24000 Week 13

How CPUs work from a low level,
How functions work from a high level



CPU Instructions, registers and pointers

● We’ll start with an 8 bit CPU with only a handful of instructions
○ This can be generalized to more modern CPUs

An example 8-bit CPU



CPU Instructions, registers and pointers

● We’ll start with an 8 bit CPU with only a handful of instructions
○ This can be generalized to more modern CPUs

● CPUs have instructions, which are basic things like add, multiply, &, |, etc.
○ Example: Add r1, r2 adds r2 to r1, saving the value to r1
○ r1 and r2 are registers, which are like RAM, but there are only a few of them (30-40 on most 

processors today)
○ Most instructions use only two registers

An example 8-bit CPU



CPU Instructions, registers and pointers (cont.)

● More advanced instructions exist to reference and dereference memory
○ Example: Load r1, 0xf1 loads the value of address 0xf1 into register r1
○ Store r1, 0xf2 stores r1’s value into 0xf2

An example 8-bit CPU



CPU Instructions, registers and pointers (cont.)

● More advanced instructions exist to reference and dereference memory
○ Example: Load r1, 0xf1 loads the value of address 0xf1 into register r1
○ Store r1, 0xf2 stores r1’s value into 0xf2

● Some registers handle important stuff
○ PC, or the program counter, points to the next instruction in memory
○ Some registers are designated for return values, conditionals, etc.

An example 8-bit CPU



What does this have to do with HW12??

● One special register, PC, is responsible for keeping track of the current state 
of the program
○ When you call a function, that function’s memory address is stored into PC, and the remaining 

registers are filled with the function’s input arguments
● PC can also jump to a function pointer, which behaves exactly the same

○ If you have a function int fn(int x), and a function pointer int (*fn_ptr)(int) = &fn, calling either of 
these will update the program counter to the same location

Side note: The stack exists in memory to keep track of variables
that don’t fit in the registers (and the heap stores dynamic memory)



Functions in the Heap/Stack

● It is technically possible to store functions in main memory
○ Why wouldn’t you though?

● It’s bad practice, but I’ll talk about it anyway
● It requires an extra flag when compiling

○ gcc -zexecstack … 
● Typically all we care about is the function pointer itself

○ Storing the actual function in main memory is useful for self modifying code, but that’s a topic 
for another day

○ See “execstack_sample.c” on my personal website for a simple example


