CS 24000 Week 13 ‘

How CPUs work from a low level,
How functions work from a high level




CPU Instructions, registers and pointers

e WEe'll start with an 8 bit CPU with only a handful of instructions

o This can be generalized to more modern CPUs
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CPU Instructions, registers and pointers

e WEe'll start with an 8 bit CPU with only a handful of instructions

o This can be generalized to more modern CPUs

e CPUs have instructions, which are basic things like add, multiply, &, |, etc.
o Example: Add r1, r2 adds r2 to r1, saving the value to r1
o 11 and r2 are registers, which are like RAM, but there are only a few of them (30-40 on most
processors today)
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CPU Instructions, registers and pointers (cont.)

e More advanced instructions exist to reference and dereference memory

o Example: Load r1, 0xf1 loads the value of address 0xf1 into register r1
o Storer1, 0xf2 stores r1's value into 0xf2
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CPU Instructions, registers and pointers (cont.)

e More advanced instructions exist to reference and dereference memory
o Example: Load r1, 0xf1 loads the value of address 0xf1 into register r1
o Storer1, 0xf2 stores r1’s value into 0xf2

e Some registers handle important stuff

o PC, or the program counter, points to the next instruction in memory
o Some registers are designated for return values, conditionals, etc.
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What does this have to do with HW12??

e One special register, PC, is responsible for keeping track of the current state

of the program
o  When you call a function, that function’s memory address is stored into PC, and the remaining
registers are filled with the function’s input arguments
e PC can also jump to a function pointer, which behaves exactly the same

o If you have a function int fn(int x), and a function pointer int (*fn_ptr)(int) = &fn, calling either of
these will update the program counter to the same location

Side note: The stack exists in memory to keep track of variables
that don't fit in the registers (and the heap stores dynamic memory)




Functions in the Heap/Stack

e Itis technically possible to store functions in main memory
o  Why wouldn't you though?

e It's bad practice, but I'll talk about it anyway

e It requires an extra flag when compiling
o gcc -zexecstack ...
e Typically all we care about is the function pointer itself

o  Storing the actual function in main memory is useful for self modifying code, but that's a topic
for another day
o See “execstack_sample.c” on my personal website for a simple example




