CS 24000 Week 13 ‘

How CPUs work from a low level,
How functions work from a high level

CPU Instructions, registers and pointers

e WEe'll start with an 8 bit CPU with only a handful of instructions

o This can be generalized to more modern CPUs

Ce___)
CLK— weus [) L
—b pc (@), .
CLR Ar|l ACC 4—_CLK
Ep—— 8 :_} L E 2
= , 8|
im—{ mAR (4] :
e J | awv [
Jol "
16X 8 ‘[“*""» ’sz
— 8 E—— —
— RAM |-=y/ U '
o JEe) 8 4¢—cix
g J
: YO Vo s
Loak—p g\ | output e
T — (@)) Registert—¢LK |
g S | L. £ ister)
1 =
,t'[f—i‘: . Jd.
i CLK il 1 — —
! CLK— CU/ | Binary
i gt::s«uﬁnc" Display

£
A2

An example 8-bit CPU

CPU Instructions, registers and pointers

e WEe'll start with an 8 bit CPU with only a handful of instructions

o This can be generalized to more modern CPUs

e CPUs have instructions, which are basic things like add, multiply, &, |, etc.
o Example: Add r1, r2 adds r2 to r1, saving the value to r1
o 11 and r2 are registers, which are like RAM, but there are only a few of them (30-40 on most
processors today)

Ce__ ¢ ™ - :
) LolK—p N) -
o Most instructions use only two registers L eg— T [y aee i
: , - T Is '
L] war .
y SH— - ,“” () aw t?
i sl J *,],.f‘; d
' e 0j
CE— A | r’ =) a d—;'LK
” J
- e § (8] i\ 5.,]
: %';E“: a ‘[}:;) Roe:'lzletr'*_c"" :
,t[‘]' s ’ ; J,‘T‘--
! CLK: | — P ——
gEE — chcu?r{c" Dal]:;;;yy

£
A2

An example 8-bit CPU

CPU Instructions, registers and pointers (cont.)

e More advanced instructions exist to reference and dereference memory

o Example: Load r1, 0xf1 loads the value of address 0xf1 into register r1
o Storer1, 0xf2 stores r1's value into 0xf2

Ce___)
CLK— weus [) Lt
—b pc |[@ - 2
CLR v| acc 4—dik
Ep— 8 : ‘_] L E 2
e all , 8|
tm—) MAR (4] 3
e J | awv [
i Lol e
16X8 73[
Se— Ram |8y 5 . 3
J) 8 ¢—cCix !
g J
¢) - A —
Loak—p g\ | output e
= () £ Register—CtX
R = e
1 =
,t'[f—i‘: L Jd.
i CLK il 1 — —
! CLK— CU/ | Binary
i gt::s«uﬁnc" Display

£
A2

An example 8-bit CPU

CPU Instructions, registers and pointers (cont.)

e More advanced instructions exist to reference and dereference memory
o Example: Load r1, 0xf1 loads the value of address 0xf1 into register r1
o Storer1, 0xf2 stores r1’s value into 0xf2

e Some registers handle important stuff

o PC, or the program counter, points to the next instruction in memory
o Some registers are designated for return values, conditionals, etc.

Ce___ N\ —
CLK— Alweus) -
cR—[PC [£) s ,_i ACC 4 dik
| =
, - 8
c% MAR (4 ts
s | aw [
8 e
PR 8 o
_ 16X8 ‘ré—‘-» ’” -
CE— RAM |-=/ —A\) H
J L) 8 ¢—cik !
> J
H L— e % ;
H CLK: b IR {%1 _"—“'\' OQutput L |
T = [4) —/ Reqlslerj_c“(!
= S
,t'[f—i‘: 2 del
i CLK—]] == e
3 gt:: cu/ Binary
i erR—1 Sequencer Display

£
A2

An example 8-bit CPU

What does this have to do with HW12??

e One special register, PC, is responsible for keeping track of the current state

of the program
o When you call a function, that function’s memory address is stored into PC, and the remaining
registers are filled with the function’s input arguments
e PC can also jump to a function pointer, which behaves exactly the same

o If you have a function int fn(int x), and a function pointer int (*fn_ptr)(int) = &fn, calling either of
these will update the program counter to the same location

Side note: The stack exists in memory to keep track of variables
that don't fit in the registers (and the heap stores dynamic memory)

Functions in the Heap/Stack

e Itis technically possible to store functions in main memory
o Why wouldn't you though?

e It's bad practice, but I'll talk about it anyway

e It requires an extra flag when compiling
o gcc -zexecstack ...
e Typically all we care about is the function pointer itself

o Storing the actual function in main memory is useful for self modifying code, but that's a topic
for another day
o See “execstack_sample.c” on my personal website for a simple example

